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The longitudinal flow of anomalous liquids is closely involved in the technology of forming of 
synthetic fibers and measurements of theological properties [1]. Numerous papers are devoted to nontrivial 
hydrodynamic effects accompanying the flow of rectilinear jets [2, 3]. The steady-state flow of a nonrectilinear 
viscoelastic jet was first considered in [4]. 

In the present work, we study the longitudinM flow of a free jet under the transverse action of gravity 
forces. A new hydrodynamic phenomenon, namely, bifurcation of tensile stresses and of the stationary jet 
configuration, is found. The  dynamic flow regimes are studied. The mechanism of generation of self-oscillations 
is explained. 

1. Let us consider the main features of steady-state flow. The flow and the balance of forces acting on 
an elementary section of the flow are shown schematically in Fig. 1. The liquid is fed at a constant velocity 
v0 from a filler. From the flow region the jet is uniformly collected by an intake receiver (suction roll), which 
specifies a certain value of the longitudinal velocity Vl. The x axis is directed horizontally. The outflow and 
collection points axe located at the same level. The origin of the Eulerian coordinate system is placed in the 
section in which profile rearrangement has been completed. The jet and the coordinate axes lie in one vertical 
plane. The air drag and surface tension of the liquid are ignored. We assume that  viscous forces are so great 
that  inertial effects and capillary forces are negligible in comparison. An element of the jet experiences the 
effect of gravity and theological resistance. 

Description will be performed within the framework of quasi-one-dimensional equations of continuity 
and conservation of momentum:  

Oa 2 Oa2v 0 0 . 
0---~- § 0----~ - 0, ~s(Pcos~o) = 0, ~-~s(Psm~) = ~ra2pg, P = 7ra2cr11. (1.1) 

Here s is the coordinate reckoned along the jet axis; P is the tension force in the normal section; a is the 
current radius of the round jet; r is the tensile stress; p is the liquid density; g is the acceleration of gravity; 
v is the axial velocity; and to is the angle of inclination of the jet to the horizontal. 

We write the boundary conditions for steady-state flow as 

x = 0 ,  y = 0 ,  ~ = ~ 0 ,  v = v 0 ,  a = a 0 ;  x = l ,  y = 0 ,  v = K v o ,  (1.2) 

where I is the length of the flow zone; K = v l / vo  is the stretching multiplicity; a0 is the initial radius; and ~0 
is the initial angle. 

To close the problem, Eqs. (1.1) should be supplemented by the dependence of tensile stresses on the 
strain rate. Conventionally, polymer solutions and melts are subjected to uniaxial tension under isothermal and 
anisothermal conditions, however, the main features of the flow in question are found already in the Newton 
approximation. Under uniaxial tension of a Newtonian fluid the stress is determined from the formula 

Ov 
Crll = 3Y~ss (1.3) 

where 7? is the viscosity. 
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Integrating the second equation in (1.1), we obtain Pcosqo = H(t) .  Consequently, the horizontal 
tension component H is uniform along the jet and can vary with time only in dynamic regimes. Let us 
consider preliminarily the case of steady flow, in which, instead of the first equation in (1.1), we use the 
integral continuity condition va 2 = voa2o. 

Introduction of the dimensionless variables 

x y v HI pgl 2 
X =  7,  Y =  7'  V =  --,vo q -  3y~ra2ovo ' R = 3 q v 0  (1.4) 

enables us to write problem (1.1)-(1.3) for steady-state conditions in the form 

qV 

cos 2 qo' (1.5) 
d Y  dqo R cos qo dV 
d X  =tanq~  d X  qV ' d X  

X = 0 ,  Y = 0 ,  ~o=qo0, V = I ;  X = I ,  

We used the obvious relations ds cos qo = dx, ds sin qo = dy. 
The solution of problem (1.5) in quadratures has the form 

z Z 

Y = 0 ,  V = K .  

X = ~  ~ '  Y =  lv:i--+-~' z = t a n q o ,  z0= tanqo0 ,  
zo zo 

2R 
-~-(1 - V -1) = z~/1 + z 2 -  z0~/1 + z02 + Arsinh z -  Arsinh z0. 

Problem (1.5) was analyzed using the fourth-order Runge--Kutta method. For given R and q the 
conditions at the collection point X = 1, Y = 0 were fulfilled by varying the parameter qo0 (the shooting 
method). In so doing, the stretching multiplicity K = V ( X  = 1) was determined. 

The results of the analysis are presented in Fig. 2. For the gravitational parameter R = 0, 5, 10, 
20, and 40 (curves 1-5, respectively) the curves of dimensionless tension (a) and of the deflection of the jet 
middle part Ym = Y ( X  = 0.5) versus the multiplicity (b) are show.-.. One can see that  to fixed K and R 
correspond two values of the tensile stress q and two significantly different values of the deflection. A reduction 
of the multiplicity (decrease in the suction rate) causes the values of q and Ym to approach the degeneration 
point of bifurcation, below which steady flow is impossible. Deflections Ym ~ -0 .35 correspond, practically 
independently of R, to critical multiplicities. Flows with small deflections (Ym >/ -0 .35)  are called subcritical, 
and flows with great deflections, supercritical. The line R = 0 is described by the equations K = exp(q) and 
ym__0. 

The above flow regimes differ significantly in their responses to changes in the flow parameters, as 
illustrated in Table 1. Thus, an increase in the suction rate decreases the deflection in subcritical flow and 
increases it in supercritical flow. An increase in the acceleration of gravity or in the length of the flow zone 
increases the deflection in subcritical flow and decreases it in supercritical flow. 

The phenomenon of bifurcation was observed on a technological setup for horizontal forming of a flat 
polymer film from a polypropylene melt. The flow pattern was similar to that  presented in Fig. 1. Traditionally, 
the forming process is carried out by small deflections of the jet (subcritical regime). An increase in the length 
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TABLE 1 

Regime 

Subcritical 
Critical 
Supercritical 

Variation of flow parameters 

x< 0.35 
0.35 

/> 0.35 

dK/dq 

> 0  
0 

< 0  

dlu 

> 0  
0 

< 0  

dlY,,,l/dK 

< 0  
0 

> 0  

of the flow zone (by means of horizontal displacement of the suction roll) results in smooth transition of the 
jet to a critical regime, which manifests itself in progressive downward displacement of the jet. After the initial 
length of the flow zone was restored, the jet did not return to the previous position but remained in the region of 
great (supercritical) deflections, preserving flow stability. For high-viscosity liquids (polyisobutylene solutions, 
molasses) the existence of critical multiplicities of stretching and deflections is confirmed under laboratory 
conditions. We were unable to realize steady supercritical flow under isothermal conditions, probably because 
of the low density of the jet at the suction point. 

2. To obtain a comparative estimate of the stability of the flows found, we studied dynamic regimes 
by introducing perturbations of different intensity. To close problem (1.1), we use the Maxwell theological 
equation of a generalized fluid [5]: 

ADo r 
r +  Dot = 2rid. 

Here A is the relaxation time; d is the strain rate tensor; r is the stress tensor deviator; and Do~Dot is the 
Oldroid convective derivative. For a Newtonian fluid, A = 0. 

Calculations were carried out for the case of the higher convective derivative. Under uniaxial tension, 
axial stresses are described by the equation 

- 2 0") . .  o , , , ,  o .  
a n  (1 0 s ]  -l- av 0s = 3 ~ .  (2.1) 

The initial and boundary conditions for Eqs. (1.1), (1.2) are as follows: 

t = 0 :  a = a . ( . ) ,  , = . . ( . ) ,  u = u . ( * ) ,  

t > 0 :  x = 0 ,  v = v 0 ,  y = 0 ,  a = a 0 ,  

t > 0 :  x = l ,  v = K v 0 ,  y = O .  

( 2 . 2 )  

In (2.2) and below the asterisk denotes variables and parameters that  correspond to steady flow. 
The steady flow of a viscoelastic jet is described by the following system of equations: 

dY,  = sinh~,,  d~, R dV, V,(q,cosh2~, + WeRs inh~ , )  2 
d X  d X  = qV,'  dX  = 1 + Weq, V, cosh~, , r ,V,  = 1, 

(2.3) 
X = O ,  Y , = 0 ,  V , = l ,  ~ , = ~ , 0 ;  X = l ,  Y , = O ,  V , = K ,  

where r = fro~l; r = a/ao; and We = Xvo/l. 
The unsteady flow problem was solved numerically without linearization. First we found a steady 

solution of (2.3). The unsteady solution was presented in the form 

r = r . (X) [ l  + a (X, r ) ] ,  V = V.(X)[1 + #(X,~-)], Y = Y . (X )  + 7 ( X , r ) .  (2.4) 

From Eqs.(1.1) and (2.1), taking into account (1.4), (2.3), and (2.4), we obtain equations for the deflections: 

1 1 
F1 - cosh--------~V,(l~ +/3), F2 - 2cosh---------~V,(lg + a)Y3, (2.5) 
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qcosh2( + We R sinh ~ - (1 + ~" q*c~ + We R sinh ~. 
F3 = (l +a)2  + WeqV,  cosh _ ~) - 1 - - + - - W e q ~  " 

The conditions for the deflections in the case of disturbance of the initial radius or velocity are written as 

r = 0 :  s = 8 = - r = 0 ,  

r > 0 :  X = 0 ,  s = s o ,  8 = 8 0 ,  7 = 0 ,  ( = ( o ( r ) ,  (2.6) 

r > O :  X = I ,  8 = 7 = 0 .  

The dynamic regimes are identical under velocity disturbances in the initial or outlet cross-section [6]. The 
tensile stresses q, and q(r) are uniform along the jet. 

Within each "time layer" the equations for 8, 7, and ( were solved by the fourth-order Runge--Kutta 
method, since we have the Cauchy problem for the system of three first-order equations. The parameters q 
and C0 were chosen from the conditions 8 ( X  = 1, q, (0) = 0 and v(X = 1, q, ~0) = 0, which were treated as 
a system of transcendental equations. The roots were found using a secant--chord algorithm. To render the 
one-dimensional equation of convective transfer discrete, we used the Crank-Nicolson finite-element scheme 
[7] with approximation order O(Ar  2, A X  4) realized by a three-point sweep. Here A r  and AX are the time 
step and step for X, respectively. 

We considered the dynamic regimes of a viscous fluid (We = 0) for steady flows with close stretching 
multiplicity and identical gravitational parameters R = 5: subcritical flow for q, = 1.5, ~,(X = 0) = -0.928, 
Y,m = -0.181, and K = 5.98 and supercritical flow for q, = 0.5, ~,(X = 0) = -2.252, Y,,~ = -0.628, 
and K = 5.76. The value R = 5 corresponds to the critical regime with q, = 0.922, ~,(X = 0) = -1.49, 
Y,m = -0.341, and K = 4.74. 

Figure 3 presents the kinetics of displacement of the middle part of the jet Y,,, = Y,m(1 + 7,,,) [Tin = 
7(X = 0.5) and Y*m = Y,(X = 0.5)] during stepwise disturbances of the initial radius for s0 # 0 and 80 = 0 
(a) and initial velocity for s0 = 0 and 80 # 0 (b). In Fig. 3a, curves 1-8 correspond to s0 = 0.2, 0.25, -0.5, 
-0.6,  0.5, 0.6, -0.55, and -0.7.  In Fig. 3b, curves 1-8 correspond to 80 = 0.8, 0.85, -0.6,  -0.7, 0.6, 1.1, -0.6, 
and -0.95. The circles correspond to loss of stability. It is evident that immediately before loss of stability 
the jet moves to regions of critical deflection (curves 2, 4, 6, and 8 in Fig. 3a and 2 and 4 in Fig. 3b). 

When the radius is disturbed in subcritical flow, rapidly attenuating longitudinal waves of contraction 
and distention propagate along the jet. When s0 > 0, jet necking starts near the suction point, and the 
deflection increases. It is during the necking of the outlet section that loss of stability takes place for s0 >/0.25 
and r ~ 0.2. When so < 0, loss of stability can occur in the period r ,,~ 0.6 due to contraction of the jet 
outlet section. Over the initial periods the outlet section increases. 

When the initial radius is disturbed, vertical deflections of the jet (from the position of static 
equilibrium) in supercritical flow are greater than in critical flow. The duration of the transient processes 
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also increases owing to the greater extension of the jet. When s0/> 0.6, loss of stability occurs at the moment 
r ~ 0.27 and is due to progressive tapering of the jet near X ~ 0.8. When tz0 ~< -0.7,  the loss of stability 
is due to tensile strains in the vicinity of the initial section. On completion of the transient processes the 
following relations are characteristic of the new steady flow: ~ = or0,/~ = 7 = 0, Oa/O~" = O, Oa/OX = 0, 

= ~,, and q = q,(1 + a0) 2. 
In the case of disturbance of the initial velocity, the tension and deflection of the jet change stepwise. 

The distribution of velocity disturbances is nearly linear and varies only slightly during the transient process. 
The supercritical flow is rather stable against negative velocity disturbances: the flow was maintained even at 

Do - -0.95. 
Even small disturbances of the radius or velocity in the critical flow (a0 ~ fl0 -~ :t=0.01) cause rapid 

loss of stability of the finite-difference scheme in the first time steps. 
Thus, the subcritical and supercritical regimes are comparable in stability to disturbances in the initial 

section. 
A similar analysis was performed for a viscoelastic liquid. In the subcritical regime the disturbances lead 

to an insignificant vertical displacement of the jet. The flow stability increases significantly. On the whole, the 
"damping" properties of the system, which manifest themselves in a reduction in the oscillation amplitude of 
the middle part of the jet and in rapid attenuation of transient processes, are considerably increased. However, 
self-oscillations which bring about loss of stability appear in the supercritical regime for a0 < -0.2. 

For a viscoelastic liquid, a numerical experiment on transition from subcritical to supercritical flow 
by varying the parameter R (which is equivalent to variation of the length of the flow zone) was carried 
out. The characteristics of the steady subcritical flow were as follows: R = 5, We = 0.1, q, = 15, K = 9.5, 
~,0 = -0.0644, and Y,m = -0.0985. The program of variation of the parameter R and of the deflections of the 
middle part of the jet is shown in Fig. 4. The parameter R was varied stepwise interactively after every two 
time steps. The initial step for R was 5, but as critical deflections were approached, the step was decreased 
gradually to 0.02 (horizontal plateau is shown for 0.15 < r < 0.3 in Fig. 4). The value R = 37.5 corresponds 
to critical deflections. The time of transition of the flow to the supercritical regime was determined by the 
character of the dependence of deflection on R (see Table 1). After the transition the gravitational parameter 
reduces to 5. In this case, the deflection increased, approaching the steady supercritical regime. 

As R increases in the subcritical flow, the jet is shifted downward, its cross-section in the middle 
part increases, and, accordingly, the initial and outlet sections decrease. Then, on the plateau R ~ 37.5 
the distention wave is shifted to the suction point. It is this "strengthening'of the outlet section that makes 
possible further transition to supercritical flow and prevents jet cutoff. The latter causes difficulties in realizing 
the transition for a Newtonian fluid. 
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Thus, the bifurcation phenomenon is consistent With the uniqueness of the solution of the Navier- 
Stokes equations [8], since the flow regime depends uniquely on the implementation of the process (sequence 
of operations), i.e., on the initial conditions. 

The effect of the elastic properties on the amplitude-frequency characteristic of the system was studied 
numerically. In the case of harmonic disturbances of the initial radius, the boundary conditions for (2.5) are 
as follows: X = 0, a = a0 s inwr, /3 = 7 = 0, and ~ = ~0; X = 1 and/3 = 7 = 0, where w = w~ w ~ is the 
frequency. 

The region of moderate frequencies is considered in the vicinity of the inverse time of stay of an element 
of volume in the deformation zone. The amplitude of disturbances is a0 ~< 0.1. The amplitude of oscillations 
of the outlet radius was monitored after establishment of the oscillation regime a +. The subcritical and 
supercritical regimes for viscous (K = 5.98 and R = 5) and viscoelastic (K = 9.5, R = 5, and We = 0.1) 
liquids are studied. 

Figure 5 presents the amplitude-frequency characteristics. The amplification factor a+[a0  is plotted 
along the x-axis. Curves 1 and 2 correspond to subcritical and the supercritical viscous flows, while 3 and 4, 
to subcritical and the supercritical viscoelastic flows. 

In subcritical viscous flow, the dependence is of a clearly expressed resonance character. In the resonance 
region the curve of a ( X  = 1, ~') has pointed maxima similar to those described in [9]. Vertical oscillations of 
the middle part of the jet are also of a resonance character. In supercritical flow, the "damping" properties 
of the jet increase and the eigenfrequency decreases. There are considerable vertical resonance oscillations of 
the middle part of the jet. The viscoelastic liquid possesses clearly expressed "damping" properties, and the 
amplification of disturbances decreases significantly for all moderate frequencies in both regimes. Numerical 
study of short-wave disturbances (w >> 1) makes no sense, because long-wave approximation equations are 
used. 

The influence of jet nonrectilinearity on "resonance under stretching" is analyzed. It is known that for 
rectilinear viscous jets self-oscillations of finite radius with increasing amplitude occur when K > 20 and 22 
[10, 11]. It was noted in [10] that the finite-difference approximation for rectilinear jets gives an overestimated 
critical multiplicity. Therefore, the results presented below permit one to estimate only qualitatively the effect 
of flow conditions on the generation of self-oscillations. 

For a viscous liquid (We = 0) a stepwise disturbance of the initial velocity/3o = 0.05 and a0 = 0 was 
assigned in (2.6). For fixed R, as q, increases [in this case multiplicity was determined from the steady-state 
problem (2.3)] the moment of appearance of self-oscillations of the outlet radius of increasing amplitude was 
noted in the system. If the effect of gravitation is slight (R = 1 and Y,m = -0.0034) for q, < 4.9 (K < 134) 
the oscillations attenuate, and for q, > 4.9 (K > 134) sinusoidal self-oscillations of increasing amplitude 
are established. Normal bifurcation of cycle generation takes place. As the jet deflection increases within 
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critical deflections (R = 20 and Y.m = -0.058) self-oscillations with increasing amplitude appear at q, > 5.05 
(K > 183). An increase in the gravitational parameter R from 1 to 20 is equivalent to an increase in the 
flow zone by a factor of Vr~. Thus, a small deflection of the stretched jet increases its stability against the 
appearance of self-oscillations. With increasing R, the value of q, corresponding to the moment of generation 
of self-oscillations increases insignificantly. 

For a fixed R, the tendency of longitudinal flow to manifest of self-oscillations is studied in a wide range 
of deflections. According to Fig. 2, the steady-state deflection is uniquely determined by q.. As was mentioned 
above, self-oscillations occur for small deflections (comparatively great K and q.). As the deflections increase, 
self-oscillations appear near the critical flow regime Y, ~ -0.3 (parametric resonance). No self-oscillations 
are found in the supercritical regime. With an increase in the deflections the character of variation in the 
outlet radius changes gradually from oscillatory to aperiodically attenuating. Therefore, the flow instability 
in critical deflections is due to the appearance of increasing-amplitude self-oscillations in the jet. This causes 
difficulties in the transition of subcritical flow to the supercritical regime. 

In the flow under consideration the spontaneous intensification of oscillations is caused by an additional 
energy supply to the jet. The generation of increasing-amplitude self-oscillations is characteristic of feedback 
systems [12]. Information on the changing outlet radius returns to the flow zone as a tensile stress of uniform 
length which changes with time (capillary and inertial forces are ignored). The pulsations of tensile stress 
exert a modulating effect on the dynamic processes in the jet. In isothermal viscous flows the strain rate 
gradient at the suction point takes the largest value, whereas the tensile stress is determined by ~ra2rlav/Os. 
Anisothermicity, dilatancy, and elastic properties reduce the tension rate gradient in the outlet section, and 
the steady flow region is widened. The feedback of tensile stress is eliminated in the case of stretching regime 
with a constant tensile stress, and no "resonance under tension" appears [2]. 

The author expresses gratitude to V. M. Entov for consideration of the work. 
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